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DIFFUSION OF A MEGAGAUSS FIELD INTO A METAL

UDC 533.95:537.84S. F. Garanin, G. G. Ivanova,

D. V. Karmishin, and V. N. Sofronov

The plane one-dimensional problem of the diffusion of a megagauss field into a metal wall is solved
taking into account heat conduction and radiation transfer. At the interface, the magnetic field is
assumed to be constant, and in this sense, the problem is close to the self-similar diffusion problem
with parameters dependent on the self-similar variable x/

√
t. It is shown that if heat conduction

and radiation transfer are taken into account, in megagauss fields (in the examined formulation for
fields B > 1.6 MGs) there is no loss of conductivity of the material evaporated by the magnetic field
because of the formation of a plasma layer at the interface with a temperature in the electronvolt
range. However, the role of the plasma layer in the structure of the skin layer remains insignificant
up to fields B ≈ 10 MGs.
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Introduction. The diffusion of megagauss fields into a metal plays an important role for both the generation
of these fields and for their numerous applications, such as the acceleration of liners by a magnetic field, and has
been studied beginning in the very early classical papers devoted to high magnetic fields. The theory of nonlinear
magnetic diffusion into a metal is presented in a book by Knoepfel and other books and surveys [2, 3] and a broad
range of related phenomena, such as metal vaporization and plasma formation was considered in the classical papers
of Lyudaev [4]. Since then, problems of diffusion of high fields into a metal have been considered both experimentally
and theoretically, in numerous papers and various applications, see, for example, [5]). However, in the literature
there are no theoretical considerations of problems solved in the simplest formulation taking into account the main
phenomena involved in the diffusion of a high magnetic field into a metal. Among these phenomena, plasma
formation on a metal boundary is of significant importance.

The lack of clarity in the issues of diffusion of a high magnetic field into a metal leads to fallacies and
inaccuracy in some papers. In many papers, including [4] there is the belief that explosion of a conductor leads
to the formation of a cold nonconducting gas, which expands from the metal boundary across the field. However,
from physical considerations and corresponding calculations it follows that in practice this does not occur in fields
of about a few megagauss. Indeed, the radiation emitting from the surface of a hot metal with a temperature in the
electronvolt range contains rigid quanta, which ionize the vapor formed and thus produce seed ionization. For low
densities, the degree of this ionization near the vapor boundary should not depend on density. Thus, at the vapor
boundary there is constant conductivity in the limit of arbitrarily low density. The formation of an electric field
due to diffusion into the metal, which is increased by vapor motion across the magnetic field, causes Joule heating
per unit volume that does not depend on the density and, hence, is infinitely large per unit mass for arbitrarily low
density at the vapor–vacuum interface. This leads to an inevitable gas breakdown, formation of a plasma piston,
which prevents gas expansion, and formation of a conducting plasma layer instead of the nonconducting expanding
gas, as is confirmed by calculations.

Another fallacy that is often encountered in some papers is in a sense opposite to the first one. It is related
to the belief that a rather hot and highly radiating plasma is formed at the boundary with the metal even in fields
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of about one megagauss — similarly to the magnetically pressed discharge on an insulator surface considered in [6].
This reasoning, however, does not apply to a plasma discharge on a metal surface since the shunting of the discharge
over the plasma by metallic conductivity (even decreased because of Joule heating) sharply reduces the electric fields
in the plasma, and, as a result, only a small fraction of the current flows over it even at fields of 10 MGs. For
perfect metallic conductivity, discharge over the plasma is generally impossible since energy can be supplied to this
discharge only from the magnetic field but the magnetic-field energy cannot decrease since the magnetic flux has
no place to expand.

In many papers dealing with the motion of liners under the action of high magnetic fields, the corresponding
magnetohydrodynamic (MHD) problems are considered ignoring heat conduction in plasma layers. In such consid-
eration, numerical calculations can generally (for not too fine grids) give correct characteristics of liners but one
should bear in mind that this approach contains internal inconsistencies and will not give correct results in the case
of rather fine grids. Let us show this using a Lagrangian grid in a one-dimensional calculation.

In Lagrangian calculations ignoring heat conduction, the characteristic mass scale of the produced plasma
ρx (ρ is the plasma density and x is the layer thickness) is determined by the grid resolution:

ρx ∼ ∆m. (1)

Therefore, we consider the plasma behavior on this scale if the characteristic magnetic B and electric E fields are
determined by the diffusion into the metal adjacent to the plasma. The characteristic plasma pressure is determined
by its Joule heating:

p ∼ σE2t, (2)

where σ is the plasma conductivity and t is the characteristic time. For a thin plasma layer, the equilibrium
condition should be satisfied with good accuracy:

p ∼ (σE/c)Bx. (3)

From (1) and (2) it follows that the layer thickness increases with time as

x ∼ cEt/B. (4)

Substituting the pressure p ∼ zρT (z is the degree of ionization of a multiply ionized plasma and T is the charac-
teristic temperature) and the conductivity σ ∼ T 3/2/z into (2) and taking into account (1) and (4), we obtain

√
T

z2
∼ B∆m

E3t2
. (5)

For a multiply ionized plasma with z � Z (Z is the nucleus charge), z4/3 ∼ T and from (5) we find that the plasma
temperature T ∼ E3t2/(B∆m) is inversely proportional to the grid resolution and increases with time until the
plasma pressure p ∼ E17/4t5/2/(B(∆m)3/4) becomes equal to the magnetic pressure and the plasma shields the
metal. If the plasma is heated to the level z ∼ Z and z is no longer dependent on temperature, the temperature
rise becomes so rapid that it should be described by the differential form (2), i.e., ρ dT/dt ∼ T 3/2E2, and, using
the equilibrium condition (3), for the temperature rise, we obtain

dT

dt
∼ T 5/4E3/2

√
B∆m

. (6)

From (6) it follows that if the degree of ionization reaches the level z ∼ Z, then, in the finite time
τ ∼

√
B∆m /E3/2T

1/4
0 (T0 is the temperature corresponding to the degree of ionization z ∼ Z), the tempera-

ture goes to infinity, and the finer the grid the smaller this time. In fact, of course, the temperature increases until
the thermal pressure of the plasma becomes equal to the magnetic pressure and until shielding of the metal occurs.

Thus, using rather fine grids in calculations, it is possible to obtain plasma shielding of the skin layer in the
metal. In many cases for real grids, this shielding may not have time to develop in times of interest. Since for fields
B < 10 MGs and correct accounting for the plasma region, the role of shielding in the current branched from the
metal and the plasma mass confined in the skin layer is insignificant, the calculation error (even by several times)
may have an insignificant effect on the liner behavior. In any case, however, one needs to know how to estimate the
characteristics of the plasma layers and to understand that their incorrect account can lead to wrong results.
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Formulation of the One-Dimensional Problem. The diffusion of a magnetic field into a metal was
considered using as an example diffusion from vacuum into a semi-infinite copper wall. The calculations were
performed in a one-dimensional MHD formulation on a Lagrangian grid. It was assumed that all values depend
on the coordinates x and time t, and the magnetic B and electric E fields are perpendicular to each other and to
the x axis. It was assumed that at the initial time, cold copper occupies the region x > 0, the magnetic field in
this region is equal to zero, and a magnetic field as a function of time B0(t) was specified at the boundary of the
material. The calculations took into account hydrodynamic motion, magnetic diffusion, electronic heat conduction,
and radiative heat transfer in the “back and forth” approximation. The equation of state, conductivity, electronic
heat conductivity, and radiation paths for copper used in the calculations are given in [7].

As regards the boundary condition that defines radiation propagation, two versions are possible: in one case,
it is assumed that the entire radiation leaves the surface (an open system), and in the other cases, the radiation flux
on the boundary is equal to zero (a closed system), which is possible if a magnetic field diffuses from a cavity whose
walls are under identical conditions. Most of the calculations were performed for the open-system formulation and
only some (for comparison) for the closed-system formulation.

In most problems, the case of a constant magnetic field on the boundary with a plasma B0 = const was
considered. The problem thus becomes nearly self-similar, and, therefore, the profiles of all quantities are easily
recalculated from one time to other times. Indeed, for real, not too small times (in excess of a few millimicroseconds),
the hydrodynamic motion is far faster than the diffusion and it can be assumed that the total (thermal plus magnetic)
pressure has time to level off over the region of the skin layer. In this case, the magnetic diffusion and heat conduction
should be such that all values depend only on the self-similar variable x/

√
t. In principle, a deviation from this

self-similar dependence could be produced by radiation transfer in the phase where the radiation path becomes
comparable to the thickness of the plasma layer. In practice, calculations for B0 = const provide a good fit to the
self-similar dependence.

The calculations ignored some phenomena that could basically affect the pattern of magnetic-field diffusion.
First, the employed equation of state did not incorporate two-phase (liquid–vapor) states. Decay into phases
occurred automatically in the calculations but only if the material fell in the thermodynamically unstable region
(∂p/∂ρ)T < 0, and, therefore, the states of an overheated liquid and supercooled vapor were allowed. As a result,
the calculations ignored metal vaporization to vacuum for rather low-level fields B0 < 1.5 MGs, for which there may
be no plasma formation. However, the contribution of this effect is minor. Calculations with two-phase equations
of state show that for fields B0 ≈ 1 MGs, not more than a few percent of the skin layer are evaporated.

Second, radiation transfer was considered in a gray material approximation, which could not provide a
detailed account of the gas-breakdown and plasma-formation phenomena dealt with in the introduction. These
subtle phenomena can be of special interest in studies of plasma formation at rather low-level fields B0 < 1.5 MGs.
However, as was mentioned above, these effects are inherent to a small fraction of mass and are generally not too
important for the description of field diffusion into a metal.

Third, the dependence of the electrical conductivity and thermal conductivity on the degree of plasma
magnetization and thermoelectric phenomena (Nernst effect) were ignored. Generally, these effects could influence
the plasma behavior near the boundary with the vacuum, in the zone where the radiation transfer is not yet very
important because in this region the degree of magnetization of electrons ωeτe can be about unity. However, this
zone is a small fraction of the entire plasma layer, in which the role of radiation is mostly significant, and, hence,
inaccuracy in the description of this zone hardly affects the description of the skin layer in the metal as a whole.

Results of Open-System Calculations for a Constant Magnetic Field on the Boundary. Calcu-
lated profiles of the magnetic field B(x) and the density ρ(x) and temperature T (x) of the material for B0 = 1,
2, 5, and 10 MGs at t = 1 µsec are presented in Fig. 1, from which one can see how the structure of the skin layer
varies as the magnetic field increases. For B0 = 1 MGs, the copper present in the skin layer is only in the condensed
phase. For B0 = 2 MGs, the skin layer contains not only the condensed phase but also a two-phase liquid–vapor
region (on the plot given in Fig 1b, the density fluctuations in the two-phase region are smoothed) and a plasma
region, which can also be divided into a zone of radiative heat conduction and a zone of electronic heat conduction
at the boundary with the vacuum, in which the radiation is almost insignificant. Calculations in the formulation
considered (an open system; B0 = const) showed that transition from the single-phase structure of the skin layer
(Fig. 1a) to a composite multiphase structure (Fig. 1b) occurs for approximately B0 = 1.6 MGs. As the magnetic

155



2

4

6

8

0 0.01 0.02 0.03 0.04 0.05

0.2

0

0.4

0.6

0.8

10 1.0

3

1 2

B, MGs
T, eV

x, cm

r, g/cm3 T, eV

r, g/cm3

2

4

6

8

0 0.03 0.06 0.09 0.12

0.4

0

0.8

1.2

1.6

10 2.0

3

1

2

B, MGs

T, eV

r, g/cm3

x, cm

à b

3

6

9

12

0 0.05 0.10 0.15 0.20 0.25

1

0

2

3

4

15 5

3

1

2

B, MGs

x, cm

T, eV

r, g/cm3

3

6

9

12

0 0.30.1 0.2

6

0

12

18

24

15 30

3

3

1

2

B, MGs

x, cm

c d

Fig. 1. Spatial curves of the magnetic field B(x) (1), material density ρ(x) (2), and material tem-
perature T (x) (3) calculated for an open system with a constant magnetic field on the bound-
ary B0 = 1 (a), 2 (b), 5 (c), and 10 MGs (d) at t = 1 µsec.

field B0 increases, the two-phase region in the skin layer disappears and for large fields, the skin layer (Fig. 1c and d)
consists only of a condensed phase and a plasma region, in which it is possible to distinguish a zone of radiative heat
conduction (with a temperature decreasing toward the vacuum, which is explained by plasma cooling due to the
radiation transmitted through the surface) and a zone of electronic heat conduction with a temperature increasing
toward the vacuum. It should be noted that as shown in Fig. 1d, for B0 = 10 MGs, a rather large contribution
to the heating of the material (commensurable with the Joule heating) in the dense region comes from shock-wave
heating, which is substantial for high fields in this formulation, in which the magnetic field is applied to the surface
instantaneously.

For all fields B0 6 10 MGs, the plasma region is insignificant and is a small fraction of the skin layer.

This is also confirmed by the data of Table 1, which gives the skin-layer thickness x(t) =
1

B0

∫
B dx and its mass

m(t) =
1

B0

∫
Bρdx at t = 1 µsec for the fields considered. A comparison of the indicated values shows that for these

fields, the mean material density in the skin layer is rather high and corresponds to the density of the condensed
phase (although it is hardly possible to speak of a condensed phase in a material heated strongly by a shock-wave
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TABLE 1

Magnetic
field B0,

MGs

x(t) =
1

B0

∫
B dx,

cm

x(1 µsec)

x(0.1 µsec)
√

10

m(t) =
1

B0

∫
Bρ dx,

g/cm2

m(1 µsec)

m(0.1 µsec)
√

10

Fraction of current
branched in

plasma region, %

1 0.0297 1.00 0.252 1.00 0
2 0.106 1.03 0.416 1.00 0.7
5 0.175 1.03 0.797 1.01 9
10 0.168 1.03 1.31 1.04 25
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Fig. 2. Spatial curves of the magnetic field B(x) (1), material density ρ(x)
(2), and material temperature T (x) (3) calculated for a closed system with a
constant magnetic field on the boundary B0 = 2 MGs at t = 1 µsec.

with B0 = 10 MGs). The skin-layer thickness as a function of B0 increases rapidly from 1 to 2 MGs because of
nonlinear diffusion and the appearance of the two-phase region and the plasma region. Then for large fields, the
skin-layer thickness increases more slowly, and in the range 5–10 MGs, the increase ceases because magnetic-field
amplification leads to an increase in the material density in the skin layer, including in the plasma region. It is
interesting that with increase in the field in the range 1–10 MGs, the mass of the skin layer increases monotonically,
approximately as m ∼ B0.72

0 . According to the data of Table 1, the fraction of the current branched in the plasma
region is insignificant for fields B0 6 5 MGs and only for B0 = 10 MGs, it has an appreciable value.

Let us consider how the real time dependence of the quantities in the skin is close to the self-similar one, in
which all quantities should depend only on the ratio x/

√
t. The values of x(t2)

√
t1 /x(t1)

√
t2 [x(t) is the skin-layer,

and t1 and t2 are different times] and m(t2)
√

t1 /m(t1)
√

t2 [m(t) is the mass of the skin layer] given in Table 1 can
serve as a measure of deviation from this dependence; for rigorous self-similarity, they should be equal to unity.
The data of Table 1 show that, indeed, for all fields considered, the dynamics of the skin layer in this formulation is
nearly self-similar. Small deviations from self-similarity are explained by the greater role of radiation with increase
in time, resulting in a decrease in the temperature of the plasma region and, hence, an increase in its relative
thickness.

Effect of the Boundary Conditions for the Radiation on the Structure of the Skin Layer. We
consider how the structure of the skin layer changes if to the radiation flux on the boundary is set equal to zero
(a closed system). This situation is exemplified by magnetic-flux compression in a cavity. Calculated profiles of the
magnetic field B(x), material density ρ(x), and material temperature T (x) corresponding to this case for t = 1 µsec
and B0 = 2 MGs are presented in Fig 2.
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Fig. 3. Spatial curves of the magnetic field B(x) (1), material den-
sity ρ(x) (2), and material temperature T (x) (3) calculated for an open
system with a linearly increasing magnetic field at the boundary for
dB0/dt = 5 MGs/µsec at t = 1 µsec.

As one might expect, a comparison of Fig. 2 and Fig. 1b shows that the temperature in the plasma region
is slightly higher in closed-system calculations (in the zone of radiative heat conduction in the case presented in
Fig. 1b, it is about 3 eV, and in Fig 2, it is about 4 eV). In addition, there is a decrease in the thickness of the
two-phase zone in the closed system. As a result, the thickness of the skin layer is slightly higher in closed-system
calculations than in open-system calculations. However, the masses of the skin layer in both cases are approximately
identical (in the closed system, it is 0.6% lower).

Effect of a Smooth Increase in the Magnetic Field on the Structure of the Skin Layer. The
calculations described here assumed that the magnetic field is instantaneously applied to the metal boundary and
then remains constant. In most real problems, the magnetic field at the boundary increases gradually, and this, of
course, changes the structure of the skin layer. In the case of smoothly increasing field for moderately high fields, the
magnetic diffusion into metal can be calculated ignoring heat conduction, which cannot be done for instantaneous
switching of the field. Indeed, for instantaneous switching of the field for the self-similar law of variation in the
electric field at the boundary, we have E ∼ 1/

√
t and the integral over time corresponding to the Joule heating at the

boundary diverges for small times. Therefore, the heating of the material near the boundary needs to be described
taking into account heat conduction, which distributes the heat released near the boundary over a certain region.
As a result, in problems of diffusion of moderately high field (up to 1 MGs) into a metal, the volumetric Joule
heating for a smoothly increasing field is equal to approximately B2/(8π) [1], whereas for instantaneous switching
of the field near the boundary, it is much larger (for the case given in Fig 1a, by a factor of approximately 2.6).

To illustrate how a smooth increase in the magnetic field at the boundary affects the structures of the skin
layer in megagauss fields, Fig. 3 gives profiles of the magnetic field B(x), material density ρ(x), and material tem-
perature T (x) at t = 1 µsec calculated for a magnetic field increasing linearly with time for dB0/dt = 5 MGs/µsec,
so that at t = 1 µsec the magnetic field on the boundary is equal 5 MGs. A comparison of Figs. 3 and Fig. 1c shows
that in the case of megagauss fields, the heating of the skin layer is also smaller for a smoothly increasing magnetic
field than for instantaneous switching. Accordingly, a plasma layer is formed for higher magnetic fields in the case
of a smoothly increasing magnetic field than in the case of instantaneous switching. In the present calculation,
plasma formation occurred when the magnetic field at the boundary reached a value of 3 MGs, which is almost
twice larger than that for instantaneous switching.
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Conclusions. Explosion of a conductor for fields in excess of B ≈ 1.5–3 MGs leads to formation of a
conducting plasma layer at the boundary with the vacuum. For fields B < 10 MGs, the role of this layer in the
current branched from the metal and the plasma mass confined in the skin layer is insignificant but is of fundamental
importance since incorrect account for it (for example, in numerical calculations without heat conduction on rather
fine grids) can lead to complete branching of the current into the plasma layer. For a correct description of the
skinning of megagauss fields in a metal, one needs to take into account electronic heat conduction and radiative
heat transfer.

For magnetic fields at the metal boundary in excess of B0 ≈ 1.5–3 MGs, the skin layer consists of a condensed-
phase region with a nearly initial density, a two-phase liquid–vapor region, and a plasma region, which can also be
divided into a region of radiative heat conduction and a region of electronic heat conduction at the boundary with
the vacuum. A two-phase liquid–vapor region is formed for fields B0 ≈ 1.5–4 MGs, depending on the dynamics of
the magnetic field at the boundary and the boundary conditions for the radiation.

Numerical calculations of megagauss-field diffusion with a constant magnetic field at the boundary
B0 = const showed that for all fields in the range B < 10 MGs for times larger than a few millimicroseconds,
the dependence of all quantities in the skin layer is adequately described by a self-similar dependence (on the
variable x/

√
t).

A comparison of closed- and open-system calculations shows that the temperature in the plasma region in a
closed system is slightly higher (for example, for B0 = 2 MGs in the zone of radiative heat conduction in the open
system it was about 3 eV, and in the closed system, it was about 4 eV).

The heating of the skin layer is considerably higher for a smoothly increasing magnetic field than for instan-
taneous switching. Accordingly, in this case, the formation of a plasma layer occurs at higher magnetic fields than
it does in the case of instantaneous switching.

The thank A. M. Buiko, V. B. Yakubov, and L. N. Plyashkevich for useful discussions.

REFERENCES

1. H. Knoepfel, Pulsed High Magnetic Fields, North-Holland, Amsterdam (1972).
2. F. Herlach, “Megagauss magnetic fields,” Rep. Progr. Phys., 31, Pt. 1, 341–417 (1968).
3. C. M. Fowler, “Losses in magnetic flux compression generators, Part 1: Linear diffusion,” LANL Report No.

LA-9956-MS (1984); Part 2: “Radiation losses,” LANL Report No. LA-9956-MS (1986).
4. R. Z. Lyudaev, “Elementary theory of magnetic cumulation,” in: Megagauss Megaampere Pulsed Technology and

Applications, Proc. Seventh Int. Conf. on Megagauss Field Generation and Related Topics, Vol. 1, Inst. of Exp.
Phys., Sarov (1997), pp. 86–114.

5. A. M. Buyko, O. M. Burenkov, V. V. Zmushko, et al., “On the feasibility to achieve high pressures with disk
ENG driven impacting liners,” in: Pulsed Power Plasma Science-2001, Digest of Technical Papers, Vol. 1, Las
Vegas (2001), pp. 516–519.

6. S. F. Garanin, “Diffusion of a strong magnetic field in a dense plasma,” J. Appl. Mech. Tech. Phys., No. 3,
308–312 (1985).

7. S. F. Garanin and V. N. Mamyshev, “Cooling of a magnetized plasma at a boundary with an exploding metal
wall,” J. Appl. Mech. Tech. Phys., No. 1, 28–34 (1990).

159


